Biomaterial-Mediated Modification of the Local Inflammatory Environment
نویسندگان
چکیده
Inflammation plays a major role in the rejection of biomaterial implants. In addition, despite playing an important role in the early stages of wound healing, dysregulated inflammation has a negative impact on the wound healing processes. Thus, strategies to modulate excessive inflammation are needed. Through the use of biomaterials to control the release of anti-inflammatory therapeutics, increased control over inflammation is possible in a range of pathological conditions. However, the choice of biomaterial (natural or synthetic), and the form it takes (solid, hydrogel, or micro/nanoparticle) is dependent on both the cause and tissue location of inflammation. These considerations also influence the nature of the anti-inflammatory therapeutic that is incorporated into the biomaterial to be delivered. In this report, the range of biomaterials and anti-inflammatory therapeutics that have been combined will be discussed, as well as the functional benefit observed. Furthermore, we point toward future strategies in the field that will bring more efficacious anti-inflammatory therapeutics closer to realization.
منابع مشابه
Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials
All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to o...
متن کاملThe human tissue-biomaterial interface: a role for PPARγ-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype.
In vivo studies of implanted acellular biological scaffolds in experimental animals have shown constructive remodeling mediated by anti-inflammatory macrophages. Little is known about the human macrophage response to such biomaterials, or the nature of the signaling mechanisms that govern the macrophage phenotype in this environment. The cellular events at the interface of a tissue and implante...
متن کاملBinding of a model regulator of complement activation (RCA) to a biomaterial surface: surface-bound factor H inhibits complement activation.
The complement system is an important inflammatory mediator during procedures such as cardiopulmonary bypass and hemodialysis when blood is exposed to large areas of biomaterial surface. This contact between blood and the biomaterials of implants and extracorporeal circuits leads to an inflammatory response mediated by the complement system. The aim of this study was to assess the ability of a ...
متن کاملGAME OF COORDINATION FOR BACTERIAL PATTERN FORMATION: A FINITE AUTOMATA MODELLING
In this paper, we use game theory to describe the emergence of self-organization and consequent pattern formation through communicative cooperation in Bacillus subtilis colonies. The emergence of cooperative regime is modelled as an n-player Assurance game, with the bacterial colonies as individual players. The game is played iteratively through cooperative communication, and mediated by exchan...
متن کاملBone Tissue Engineering: a Mini-Review
Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...
متن کامل